
Pertanika J. Sci. & Technol. 31 (3): 1353 - 1377 (2023)

SCIENCE & TECHNOLOGY
Journal homepage: http://www.pertanika.upm.edu.my/

Article history:
Received: 08 February 2022
Accepted: 24 May 2022
Published: 31 March 2023

ARTICLE INFO

E-mail addresess:
chrisando.pardomuan@binus.edu (Chrisando Ryan Pardomuan)
adkurniawan@binus.edu (Aditya Kurniawan)
yusof@tmsk.uitm.edu.my (Mohamad Yusof Darus)
mazizi@fskm.uitm.edu.my (Muhammad Azizi Mohd Ariffin)
ymuliono@binus.edu (Yohan Muliono)
*Corresponding author

ISSN: 0128-7680
e-ISSN: 2231-8526 © Universiti Putra Malaysia Press

DOI: https://doi.org/10.47836/pjst.31.3.14

Server-Side Cross-Site Scripting Detection Powered by HTML
Semantic Parsing Inspired by XSS Auditor
Chrisando Ryan Pardomuan1,2*, Aditya Kurniawan1, Mohamad Yusof Darus3,
Muhammad Azizi Mohd Ariffin3 and Yohan Muliono1

1School of Computer Science, Bina Nusantara University, Kota Jakarta Barat, Daerah Khusus Ibukota, Jakarta,
11530, Indonesia
2Computer Science Department, Bina Nusantara University, Jakarta, 11530, Indonesia
3Faculty of Computer and Mathematical Sciences, UiTM, Shah Alam, 40450, Malaysia

ABSTRACT

Cross-site Scripting attacks have been a perennial threat to web applications for many
years. Conventional practices to prevent cross-site scripting attacks revolve around secure
programming and client-side prevention techniques. However, client-side preventions are
still prone to bypasses as the inspection is done on the user’s browser, so an adversary
can alter the inspection algorithm to come up with the bypasses or even manipulate the
victim to turn off the security measures. This decreases the effectiveness of the protection
and leads to many web applications are still vulnerable to cross-site scripting attacks. We
believe that XSS Auditor, which was pre-installed in Google Chrome browser for more
than 9 years, is a great approach in combating and preventing XSS attacks. Hence, in
this paper, we proposed a novel approach to thoroughly identify two types of cross-site
scripting attacks through server-side filter implementation. Our proposed approach follows
the original XSS Auditor mechanism implemented in Google Chrome. However, instead of
placing the detection system on the client side, we design a detection mechanism that checks
HTTP requests and responses as well as database responses for possible XSS attacks from

the server side. From 500 payloads used to
evaluate the proposed method, 442 payloads
were classified correctly, thus showing that
the proposed method was able to reach
88.4% accuracy. This work showed that
the proposed approach is very promising in
protecting users from devastating Cross-site
Scripting attacks.

Keywords: Cross-site scripting, injection attack,

server-side detection, web application security

Pertanika J. Sci. & Technol. 31 (3): 1353 - 1377 (2023)1354

Chrisando Ryan Pardomuan, Aditya Kurniawan, Mohamad Yusof Darus, Muhammad Azizi Mohd Ariffin and Yohan Muliono

INTRODUCTION

Cross-site Scripting (XSS) is one of the only vulnerabilities in OWASP Top 10 (Wichers
& William, 2017) four times in a row—2007, 2010, 2013, and 2017. Moreover, Cross-site
Scripting could lead to a more devastating impact, such as obtaining personal information
or stealing user cookies to hijack their identity in a fraudulent session, allowing attackers
to steal sensitive data or even take control of certain devices (Takahashi et al., 2013). As
the adoption of JavaScript spreads through the Internet and more UI libraries (e.g., React,
Vue, Angular, among others) are developed and experienced significant growth, the stake
and devastating impact that an adversary can execute malicious JavaScript on a user’s
browser environment is exponentially increasing to the degree that has not been seen
before. Although some preventive action has been taken, fixing all vulnerabilities and
eradicating Cross-site Scripting attacks by implementing defensive coding techniques on
every website is undeniably difficult.

Some research has been proposed to detect Cross-site Scripting attacks occurring in a
browser by placing the filtering engine on the browser to search through the HTML string
for any occurrence of the input, such as the IE8 Filter implemented in Internet Explorer
(Swiat, 2008) that unfortunately achieves low reliability due to its inability to detect partial
scripting detection and has no context-aware sanitation (Sarmah et al., 2018). There is also
a method called NoScript (https://noscript.net/) filter that analyzes outgoing requests from
the browser for potentially malicious XSS payload occurrences; it often leads to high false
positive rates because there is no way to verify whether the suspicious scripts appear in the
HTML document response (Sarmah et al., 2018). With the intention to solve the issues,
a more sophisticated method has also been proposed by Bates et al. (2010). Instead, they
placed the filtering engine just after the browser’s HTML parser to reduce false positivity
in the detection result. In their research, Bates et al. (2010) argue that placing the filter
after the browser’s HTML parser is considered to have a complete interposition in the
browser with great performance and high fidelity. Their research shows that by examining
the response just after parsing, the filter can examine the semantics of the response, as
interpreted by the browser, with more efficiency and error-prone processing.

Furthermore, the proposed method has been implemented first in WebKit and later in
Google Chrome, publicly known as the XSS Auditor (The Chromium Projects, 2019) for
almost 10 years. Although Google eventually decided to remove XSS Auditor from their
Google Chrome browser by late 2020, we believe the originally proposed method is still
quite effective in combating Cross-site Scripting attacks. The only caveat we think can
be improved is that XSS Auditor, among many other common XSS detection approaches,
is designed to be a broad-spectrum detection system that focuses on detecting probable
attacks across almost every website opened by the browser. It eliminates the capability of
the detection system to protect the user from Stored XSS attacks, only the Reflected and

Pertanika J. Sci. & Technol. 31 (3): 1353 - 1377 (2023) 1355

Server-Side Cross-Site Scripting Detection by HTML Semantic Parsing

DOM-based XSS. In Stored XSS attacks, the malicious payload comes inside the database
instead of directly from the user’s HTTP request. Nevertheless, as the client-side detection
system is always placed on the users’ browsers, XSS payloads stored inside the database
will already be inserted into the HTML document when the browser receives and renders
it. Hence the attack cannot be detected by client-side approaches. Moreover, Stored XSS
attacks can lead to more devastating damage because while Reflected XSS attacks often
limit the scope of the attack to the attacker (i.e., the outcome of the attack is reflected by
whoever injected the payload), Stored XSS attacks allow the payload injected by an attacker
to be executed multiple times and even affecting on the unsuspicious user’s browser context
because of its nature the payload is persistently stored inside the application’s database
(Cui et al., 2020).

Hence, we propose a detection mechanism by adopting the original XSS Auditor
mechanism to detect Cross-site Scripting attempts on the server side, not just Reflected
Cross-site Scripting attacks but Stored Cross-site Scripting. Instead of examining an HTTP
request and its related HTTP response, we propose that the third element should include
the database result when a certain request is processed on the server. Examining the
database’s response in the same way the XSS Auditor examines the HTTP request makes
the proposed method detect most of the Stored Cross-site Scripting attacks. The remainder
of this paper is organized as follows. First, we will briefly review three types of Cross-site
Scripting (XSS) attacks and the original concept of XSS Auditor proposed by Bates, Barth
& Jackson (2010). Then, we will proceed by elaborating an in-depth explanation of our
proposed method: the alternative to detect two of the three types of XSS attacks through
server-side filtering based on the XSS Auditor mechanism. Finally, the evaluation process
and the result will be presented to measure the performance of the proposed method in
detecting Cross-site Scripting (XSS) attacks.

MATERIAL

Related Works

Cross-Site Scripting. Cross-site Scripting (XSS) exploits are like most code-based injection
attacks, similar to SQL Injection, which injects an arbitrary code into an application so
that the application executes the arbitrary code on behalf of the attacker (Rodriguez et
al., 2020). In this context, the injected code on XSS attacks usually is JavaScript code or
HTML tags that contain JavaScript code. This attack exploits output functions (e.g., browser
render process) in an application that references or processes incorrectly sanitized user
input results. An XSS attack’s basic idea is to use special characters that cause the browser
to change the browser’s interpretation of a document or input from context as data into
context as program code (Liu et al., 2019). For example, when an HTML page references
user input as data, an attacker can include an HTML <script> tag that can activate the

Pertanika J. Sci. & Technol. 31 (3): 1353 - 1377 (2023)1356

Chrisando Ryan Pardomuan, Aditya Kurniawan, Mohamad Yusof Darus, Muhammad Azizi Mohd Ariffin and Yohan Muliono

JavaScript interpreter in the browser and execute the arbitrary JavaScript code put by
the attacker inside the tag. When an attacker manages to do that, and the injected code is
executed in the client browser, it can result in more nefarious activities such as stealing
cookies, defacing the interface of the website, or even unauthorized request being sent
from the victim’s browser by unbeknown to the victim (Liu et al., 2019). XSS attacks can
be divided into Reflected XSS, Stored XSS, and DOM-based XSS. The characteristics of
each attack are the following:

1. Reflected cross-site scripting
This type of XSS occurs when a dangerous string that causes XSS comes from inputting
user data on HTTP requests. This type of XSS is usually found in a web application’s
error messages and search results (Shar & Tan, 2011). In addition, this type of
attack can g e n e r a l l y occur due to input sanitation errors on users on the server
side (server-side fault). In some cases, interaction by the victim is required for the
arbitrary JavaScript code to be executed, for example, through a spoofing attack. In
a spoofing attack, the attacker must trick the victim into clicking somewhere on the
website to trigger the JavaScript code execution (Rodriguez et al., 2020).

2. Stored cross-site scripting
This type of XSS occurs when a web application stores a dangerous string from user
input on the database, and then the target application’s HTML web document references
the harmful input. Attacks on social networking sites are generally this type of XSS
attack (Shar & Tan, 2011). As Reflected in XSS, this type of attack also occurs due to
input sanitation errors on the server side (server-side flaws).

3. DOM-based cross-site scripting
This type of XSS attack focuses on manipulating the environment and JavaScript
program code (Gan et al., 2020), the HTTP response from the original website to the
victim does not change, but the client-side script runs unlike it should because the
DOM environment of the page has been manipulated by the attacker (Shar & Tan,
2011). This type does not exploit web application server vulnerabilities.

XSS Auditor. XSS Auditor is a rather novel XSS detection method that Bates et al. (2010)
proposed. It has been implemented in Google Chrome (and another Chromium-based
browser) since 2010 with the release of Google Chrome v4 (The Chromium Projects,
2019). Unfortunately, Google decided to disable and remove XSS Auditor from their
browser in 2019. Before the method is proposed, most XSS detection engine relies on
examining payload occurrences inside an HTTP response before the browser processes
the response. According to Bates et al. (2010), those method leads to lower filter precision
as it processes the syntax of the response, not its semantics. Also, searching for malicious

Pertanika J. Sci. & Technol. 31 (3): 1353 - 1377 (2023) 1357

Server-Side Cross-Site Scripting Detection by HTML Semantic Parsing

payload occurrences inside the HTML response with regular expressions tends to produce
un- necessary false positives. In Chrome’s XSS Auditor, however, the filter is placed
strategically between the HTML parser and the JavaScript engine. Placing the filter in
such a position has at least three advantages (Bates et al., 2010):

1. High performance
As the filter simply receives the HTML response already parsed (or interpreted)
by the browser into a DOM-tree, it does not need the extra time to perform a time-
consuming, error-prone simulation that usually occurs when a filter performs the
parsing itself. Also, the filter can block the execution of the XSS payloads safely instead
of forcefully modifying the pre-parsed stream to mangle the injected payload, which
reduces the resources and processes taken to mitigate the attack.

2. High precision
Moreover, since the DOM-tree to be examined by the filter is coming from the browser
itself, false positives that usually occur because of a different DOM-tree interpretation
between the client’s browser and the XSS filter of the same HTML response can be
greatly reduced or eliminated.

3. Complete interposition
Additionally, placing the filter in front of the JavaScript engine lets the filter completely
interpose all elements and tags that will be treated as JavaScript instructions by the
browser. If the filter detects a malicious payload and wants to block it, it can simply
withhold the payload from the JavaScript engine, and the malicious payload will not
be executed.

In the actual implementation in WebKit, the filter mediates between the HTML parser
engine inside the WebCore component and the JavaScript engine inside the JavaScriptCore
component. To perform the inspection, the filter intercepts and examines every attempt to
run inline scripts, inline event handlers, and JavaScript URLs. In addition, the filter also
intercepts and examines the loading of external scripts and plugins, such as using document.
write to write arbitrary script tags to the HTML document itself (which we believe also
works as a bypass trick for other XSS filters).

Before searching for malicious payloads in the HTTP request sent by the browser on
behalf of the user, it must transform the URL request and any POST data to mimic how
the browser sees them (Satish & Chavan, 2017). The transformation includes URL decode,
Character set decode, and HTML entity decode. Although the transformation process is
involved, the filter does not have to simulate the complex, resource-expensive process of
the parser, such as tokenization and element re-parenting. Instead, after the transformation
has been done, the filter merely performs a matching algorithm between what can be found

Pertanika J. Sci. & Technol. 31 (3): 1353 - 1377 (2023)1358

Chrisando Ryan Pardomuan, Aditya Kurniawan, Mohamad Yusof Darus, Muhammad Azizi Mohd Ariffin and Yohan Muliono

in the transformed HTTP request (including the POST data) and the HTML elements that
are to be passed to the JavaScript engine that is intercepted from the parsing engine. If the
filter found any match, it means that some (or all) part of the user input is reflected on the
element that will be executed by the JavaScript engine, thus indicating a Cross-site Scripting
attack. When that happens, the filter refuses to deliver the element to the JavaScript engine.

Server-Side XSS Detection System. Many other proposed methods have put the XSS
detection system on the server side instead of the client-side (i.e., browser). For example,
Kazal and Hussain (2021) designed a server-side detection and prevention system
specifically for Stored (persistent) XSS attacks. The proposed method works by checking
and sanitizing the user’s input before storing it in the database, preventing the XSS payload
from the very beginning of the attack. The input sanitation is conducted using harmlist, a
list of dangerous keywords and substrings that can be used for XSS attacks and configured
by the system’s administrators. Their evaluation process was measured on Damn Vulnerable
Web Application (DVWA) application, and the proposed method could detect the attempted
attacks with staggering accuracy.

Meanwhile, Abaimov and Bianchi (2019) proposed a deep-learning (CNN) model to
detect malicious code-injection queries such as SQL Injection and XSS attacks. The dataset
used to train and evaluate the model is taken from an online publicly available common
code-injection payload list. One of the proposed approach’s main novelties lies in the pre-
processing module, which the authors argue helps improve the detection rate and accelerate
the training process by enriching the dataset with semantic labels and filtering out noisy
and ambiguous information from the payloads. The detection system is installed on the
server-side, but instead of capturing and processing raw data directly from HTTP request,
the system converts the payload into an encoded pattern to remove the randomness of the
payload and help the model identify the significance of each symbol found on the payload.
The model’s performance was measured using a confusion matrix (Accuracy, Precision,
and Recall) and reported achieving 94% accuracy, 99% precision, and 93% recall value
in detecting SQL Injection and XSS attack payloads.

Both methods propose a rather sophisticated detection system that prevents the attack,
including Stored XSS attacks before the attack even begins (i.e., when the moment the user’s
payload is to be received and processed) by sanitizing or analyzing the inputs received.
However, most of the existing web applications might already have suffered the attack
prior to installing the detection system, and the XSS payloads might already be inside
their database. Hence, even if the detection system is placed on the server-side to enable
Stored XSS detection capability, they will have difficulty detecting and removing threats
from XSS payloads already stored inside the database because the content of the database
is not inspected or analyzed by the proposed systems.

Pertanika J. Sci. & Technol. 31 (3): 1353 - 1377 (2023) 1359

Server-Side Cross-Site Scripting Detection by HTML Semantic Parsing

METHODOLOGY

This section describes the design and implementation of a server-side XSS detection
system based on Google Chrome’s original XSS Auditor algorithm (Figure 1). The system
is designed to perform pattern-matching analysis of HTML responses in the form of an
HTML document tree (DOM-tree) instead of analyzing raw string representation of HTML
responses that the server received; it aims so that the proposed method checks on the HTML
elements that are similar to what the browser sees and render, right before the JavaScript
code run by the JavaScript engine. By examining the response after HTML parsing,
the detection system can easily identify which part of the response is being treated as a
JavaScript instruction. Instead of running regular expressions over the bytes that comprise
the response, the detection system examines the DOM-tree created by the parser, making
the semantics of those bytes clear similar to how Google Chrome’s XSS Auditor works.

Pre-Processing

Before the system looks for signs of malicious JavaScript in both the HTTP request
and the Database response and compares them with the content of the HTTP response,
the input data (HTTP request or Database response) needs to be transformed as follows:

1. URL Decode
The input from HTTP requests is often encoded; hence we need to decode them to
avoid misinterpretation of the data and detect bypass attempts.
For example, %41 will be changed to the character ’A’.

2. Character-set Decode

Should the input is encoded using the uncommon encoding (e.g., UTF-7, among
others.), we convert the input to Unicode encoding to ensure that the user’s browser
and our detection system see the input in the same format.
For example, UTF-7 encoding is transformed into Uni-code characters.

3. HTML Entity Decode
The input from HTTP requests is also often encoded into HTML entities (e.g.,
& < >, among others.). Therefore, we also need to decode them to avoid
misinterpretation of the data and detect bypass attempts.
For example: & is transformed into ’&’.

The transformation is necessary because the server-side detection system must mimic
what the browser does (Satish & Chavan, 2017) to reduce and even prevent the different
interpretations between them (the client’s browser and the server). We did not design
the pre-processing step to be run during the development of the system, but instead is
embedded in the system and runs imminently every time an HTTP request or data from

Pertanika J. Sci. & Technol. 31 (3): 1353 - 1377 (2023)1360

Chrisando Ryan Pardomuan, Aditya Kurniawan, Mohamad Yusof Darus, Muhammad Azizi Mohd Ariffin and Yohan Muliono

the database is about to be put into the HTML document inside the HTTP response.
Table 1 describes every attribute and data source we considered a probable place for
the XSS payload that is the subject of this pre-processing step.

Table 1
Attributes for pre-processing

No Attribute Source Example
1 Query Param HTTP Request (URL) ?search=<script>alert(1)</script>
2 HTTP Body HTTP Request (Body) username=<script>alert(1)</script>
3 Cookie HTTP Request (Header) SESSION=<script>alert(1)</script>
4 User Agent HTTP Request (Header) User-Agent: <script>alert(1)</script>
5 Values from

Database
Database note_name: “<script>alert(1)</

script>”

After the inputs are pre-processing, the HTTP response is passed into the system’s
HTML parser to be converted into an HTML DOM-tree for XSS checking before it is sent
back to the client.

Figure 1. Cross-site scripting detection methodology

Pertanika J. Sci. & Technol. 31 (3): 1353 - 1377 (2023) 1361

Server-Side Cross-Site Scripting Detection by HTML Semantic Parsing

Detection Algorithm

According to Stock et al. (2014), the detection process in the original XSS Auditor (from
Google Chrome) is designed to analyze every single tag from the HTML DOM-tree and
check whether the tag or some of its attributes are also contained in the HTTP request.
Our detection system does the same, only it checks and compares the tag with the database
response. If the detection system finds a tag (or its attributes) from the HTML DOM-tree
contained in the HTTP request or the Database response, it will consider the tag malicious,
and the HTTP request will be marked as a malicious request. In this proposed approach,
the detection system assumes every data from the HTTP request (direct from user input)
and the Database response (indirect from user input) as the same input source. Thus, no
specific differentiation is applied between the two sources. The examined tag criteria
are as follows:

1. Inline script tags
As the major injection point for most cross-site scripting attacks, the detection system
examines every inline script tag from the document tree.
For example, <script>alert(1)</script>

2. Dangerous HTML attributes
The detection system checks for attributes in every HTML tag that are known can be
used for JavaScript execution, as can be seen in Table 1.
For example, that allows the
attacker to execute JavaScript by injecting the payload inside an onload attribute.

3. External content tags
The detection system also checks the possibility of the attacker trying to smuggle
malicious JavaScript code from external content (e.g., malicious payload placed on
arbitrary websites). Thus, the auditor also checks for every script tag that contains
the src attribute.
For example, <script foo=bar src=”http://hacker.com/evil.js”\>

Figure 2 illustrates how our detection system examines HTTP packets to find any
occurrences of arbitrary XSS payload.

When the server receives an HTTP request packet, our detection system inspects
the packet and extracts user-inputted values in the request. As we can see in the above
picture (right-side), inside the query parameters alone, there are two pieces of information
supplied by the user: the username and the search parameters. Furthermore, the arbitrary
XSS payload is located inside the search parameter. Comparing the data with the HTTP
response (left-side), we can see that the input (<script>alert(1)<script>) is reflected on the
HTML response from the server. It is a Reflected Cross-site Scripting attack. In general, for

Pertanika J. Sci. & Technol. 31 (3): 1353 - 1377 (2023)1362

Chrisando Ryan Pardomuan, Aditya Kurniawan, Mohamad Yusof Darus, Muhammad Azizi Mohd Ariffin and Yohan Muliono

our detection system to detect the attack, first, it examines the HTTP request and extracts
every possible user input from the request (request body, query parameters, among others).
Then, when the web server is about to respond to the request with an HTTP response
containing the HTML string, our detection system will intercept the response and parse the
HTML string into the HTML DOM tree. After that, for all elements and tags that satisfy
the examination criteria above, our detection system will check whether the element and/
or its content can be found inside the collected user inputs. If so, the detection system will
mark the request as a request with a potential Cross-site Scripting attack and either halt
the server’s response or simply log the event for further examination.

Table 2
HTML attributes that are considered dangerous

Figure 2. Payload inspection illustration

No HTML
Attribute

Description Example

1 href Specifies the URL of a page the
link goes to

<... href=”http://web.com/” />

2 src Specifies the URL of an external
(or internal) resource

<... src=”run.js” />

3 content Store the value associated with the
http-equiv or name attribute

<... content=”some value” />

Pertanika J. Sci. & Technol. 31 (3): 1353 - 1377 (2023) 1363

Server-Side Cross-Site Scripting Detection by HTML Semantic Parsing

The detection system utilizes the source-destination information of the network packet.
For example, when an HTTP request arrives at the server, it contains information about
where it came from (called source) and where the packet should be delivered to (called
destination). Later, when the server had finished processing the request, an HTTP response
packet was sent back to the client. The packet also contains information about where it
came from (source) and where it will be delivered to (destination), but the source and
destination are inverted compared to the source and destination in the request package.
Thus, if the source-destination combination in the HTTP requests is 1234-5678, the HTTP
response will have 5678-1234 as the source-destination combination.

The detection system also considers the database response so that the detection
system can detect more than just a Reflected Cross-site Scripting attack, as designed in
the original XSS Auditor paper (Bates et al., 2010), but a Stored Cross-site Scripting
attack as well. A Stored Cross-site Scripting attack indicates that the payload will not just
reflect on the response of the HTTP request but also be stored persistently on the server
(e.g., in the database). Hence, to examine the HTTP response where the user input is not
from the HTTP request but from the Database response, our detection system needs to
identify which Database response is an HTTP response. It is impossible to use the source-
destination combination like in the previous because although almost every database
could communicate via TPC/IP protocol, we would need to put two separate listeners:

Table 2 (Continue)

No HTML
Attribute

Description Example

4 Data Attributes
(data-*)

Store an arbitrary data private to
the page on all HTML elements

<... data-price=”2000” />

5 Event
Attributes
(on*)

Let an event triggers action in a
browser

<... onerror=someFunctionName />

one between the network and the web server
and the other between the web server and
the Database. That way, we discover that
it is not possible to correlate the source-
destination combination of the HTTP
request to the web server and the source-
destination combination of the web server to
the database. Therefore, using a timestamp
the detection system is designed to correlate
the HTTP request and the database response. Figure 3. HTTP request and response matching

Pertanika J. Sci. & Technol. 31 (3): 1353 - 1377 (2023)1364

Chrisando Ryan Pardomuan, Aditya Kurniawan, Mohamad Yusof Darus, Muhammad Azizi Mohd Ariffin and Yohan Muliono

Nevertheless, we encounter that the implementation of such a method could lead to
at least two problems, mainly because the time taken to fetch the data from the database
between each HTTP request varies; it can be 0 ms to a few seconds, depending on how
big the data and the load of the database server itself.

First problem: we designed the system to record the timestamp of both events, the
arrival of either the HTTP request or the Database response, and the completion of the
request after being processed by the web server that ends with an HTTP response being sent
back to the client. The timestamps of the two events can differ by a few milliseconds, so our
detection system needs to ensure that both are synchronized. Timestamp synchronization
is important for two reasons: the atomicity of the report and the effectiveness of the
correlation process.

Second problem: there may be several (if not many) HTTP request or Database
response that arrives at the very same moment, which leads to many request-response
elements having the same timestamp record. It can confuse the examination process. The
detection system might be unable to differentiate one HTTP response that belongs to an
HTTP request from the other responses if the timestamp is similar; hence, the detection
system yields low performance and low detection accuracy.

The detection system calculates the average time between the arrival of the HTTP
request in the server and the arrival of the Database response to solve both problems, as
seen in Equation 1.

(1)

The detection system calculates the delay between the server receiving an HTTP request
until the HTTP response is ready to be sent back to the client after being processed by the
server and stored along with the HTTP request data into a structured dataset. Then, when
the detection system detects a Database response being sent back to the web server, it
calculates the average delay time (Equation 1) and takes every HTTP request that arrived
T time before and after the timestamp of the Database response from the structured dataset,
where T is the calculated average time. Finally, the detection system retrieves every HTTP
request within the scope of the average timestamp constraint and looks for any partial
or full occurrences from both input sources (HTTP request or Database response) in the
HTTP response. It will take more computing power, but the detection accuracy will be
significantly higher.

Implementation

The system needs to intercept traffic from HTTP and the database to ensure the detection
system can retrieve data from the user’s input and the database. Hence, the implementation

Pertanika J. Sci. & Technol. 31 (3): 1353 - 1377 (2023) 1365

Server-Side Cross-Site Scripting Detection by HTML Semantic Parsing

of server-side XSS Auditor in this research consists of two modules: the HTTP Sniffer
module and the server-side XSS Auditor itself. HTTP Sniffer module intercepts every HTTP
network packet, both Request and Response after it arrives at the server and before it is sent
back to the client. The intercepted packet is stored in Redis in-memory storage to support
seamless data retrieval. When an HTTP response is ready to be sent back to the client,
XSS Auditor takes the HTTP request data from Redis and performs the XSS detection
process. If the attack indication is found, the HTTP response packet will be tainted, or
the detection system will generate log information about the attack. Figure 4 illustrates the
design of the system proposed in this paper. Both modules are developed using Python,
and the HTTP interception capability is possible using the Scapy library. Meanwhile,
the database interception capability is made possible with the help of Packetbeat by
Elasticsearch1. When the server’s database sends a query result back to the web application,
Packetbeat will intercept them and forward the resulting rows to the HTTP Sniffer module
for malicious payload checking. Communication between HTTP Sniffer and Packetbeat is
done through a socket-based connection so that they do not occupy any network port while
at the same time protecting the confidentiality and integrity of the database by making it
harder for perpetrators to intercept and peek at the transferred information.

1 https://www.elastic.co/beats/packetbeat

Figure 4. Server-side cross-site scripting detection
architecture

HTTP Sniffer

This module is responsible for capturing
HTTP packet traffic in the server. The
module parses and extracts various attributes
from the HTTP packet relevant to Cross-site
Scripting detection (Table 2). There are two
types of HTTP packets, the HTTP request
packet and the HTTP response packet.
When the captured packet is an HTTP
request packet, the module takes note of the
timestamp and stores the data in Redis along
with the timestamp information. In addition
to the request packet, when the module
receives a Database response packet from
the database server through Packetbeat,
the module will try to correlate the packet
with a single HTTP request that is already
stored in Redis according to their timestamp
difference; by retrieving the HTTP request
from Redis, combined it with the Database

Pertanika J. Sci. & Technol. 31 (3): 1353 - 1377 (2023)1366

Chrisando Ryan Pardomuan, Aditya Kurniawan, Mohamad Yusof Darus, Muhammad Azizi Mohd Ariffin and Yohan Muliono

Table 3
Obtained information from HTTP request packet

No Attribute Location Purpose
1 Cookie HTTP Header Potential XSS payload location
2 Host HTTP Header Information about the attack
3 Request Body HTTP Body Potential XSS payload location
4 Query Param HTTP Header Potential XSS payload location
5 Content-type HTTP Header Limit checking to text/html content only
6 Request Method HTTP Header Information about the attack

Every data collected by the HTTP Sniffer module: the HTTP request, Database response
(if any), and the HTTP response, as we called it AuditBundle data to be short, has a unique
identifier when stored in Redis. This unique identifier, generated based on the timestamp
of arrival as a UUID string, helps this module and every other module find the connection
between an HTTP request, a Database response, and an HTTP response. While the raw
data is stored inside Redis, the detection system also stores a combination of the uniquely
generated packet identifier (named BundleID) and its timestamp of arrival (T) in the form
of time series data inside RedisTimeSeries (Figure 5).

Figure 5. Storing AuditBundle to Redis and
RedisTimeSeries

A similar concept also applies to data
retrieval. When this module needs to retrieve
the previously stored data from Redis, it
performs a TimeSeries query and retrieves
every BundleID that has a timestamp
between T¯ time before and after the current
timestamp (the time when the detection
system captures the HTTP response) (Figure
6), where T¯ is the calculated average
response time of the web server (1). It is

response, and then stored it back to the Redis (Figure 6). List of data and information
captured from the HTTP can be seen on Table 3. Then, both data are combined and stored
in Redis. Finally, when the module captures an HTTP response packet, it retrieves the HTTP
request packets and (if any) the Database response from Redis and sends the combined
data to the XSS Auditor module for inspection. Also, both storing and retrieving operation
inside Redis is done using RedisTimeSeries (https://oss.redislabs.com/redistimeseries/)
data structure available on Redis as a third-party module. RedisTimeSeries are used for
two reasons: to preserve efficiency and speed when computing and retrieving time data
and to make Redis able to store time data effectively.

Pertanika J. Sci. & Technol. 31 (3): 1353 - 1377 (2023) 1367

Server-Side Cross-Site Scripting Detection by HTML Semantic Parsing

important to know that the TimeSeries query might return more than one BundleID at that
time range, depending on how much the traffic load is experienced by the server. After that,
for every retrieved BundleID from the query, the module will retrieve the AuditBundle
accordingly. Every AuditBundle retrieved will be passed into the XSS Auditor module for
a thorough inspection. In the optimal condition, an AuditBundle will contains an HTTP
request, a database response, and an HTTP response (Table 3).

Figure 6. Retrieving AuditBundle from Redis

No Attribute Location Purpose
1 Cookie HTTP

Header
Potential

XSS payload
location

2 Host HTTP
Header

Information
about the

attack
3 Request

Body
HTTP
Body

Potential
XSS payload

location
4 Query

Param
HTTP
Header

Potential
XSS payload

location
5 Content-

type
HTTP
Header

Limit
checking to

text/html
content only

6 Request
Method

HTTP
Header

Information
about the

attack

Table 3
Obtained information from HTTP request packet

XSS detection since some requests do not require database interaction (e.g., a simple visit
GET request). Light Inspection occurs the moment the HTTP Sniffer module captures
an HTTP response. This module then receives an AuditBundle that contains the related
HTTP request packet and HTTP response packet from the HTTP Sniffer module and
performs Reflected Cross-site Scripting detection. Since Light Inspection does not wait
for the Database response, only user input in the HTTP request (e.g., Query Parameter on
POST Body) will be checked. On the other side, the Deep Inspection is designed to run
the XSS inspection only after the HTTP Sniffer module intercepts a database response.
When performing Deep Inspection, this module receives the HTTP request, the Database
response information, and the HTTP response, all compiled into an AuditBundle data from
the HTTP Sniffer module. With these data, the XSS Auditor module performs Stored and

XSS Auditor
This module has two main responsibilities:
to manage the data (AuditBundle data)
required for the XSS inspection from the
HTTP Sniffer module and to perform the
inspection itself. Therefore, we designed this
module to have two inspection types: Light
and Deep Inspections.

Light Inspection is designed so that
the XSS Auditor module does not have to
wait for a Database response to perform an

Pertanika J. Sci. & Technol. 31 (3): 1353 - 1377 (2023)1368

Chrisando Ryan Pardomuan, Aditya Kurniawan, Mohamad Yusof Darus, Muhammad Azizi Mohd Ariffin and Yohan Muliono

Reflected Cross-site Scripting detection using the algorithm comprehensively described
in the previous section (see Detection Algorithm section).

Finally, suppose the detection system found any occurrences of the evaluated HTML
component (see Detection Algorithm section) on the input (HTTP request, Database
response, or both). In that case, the detection system taints the response by injecting a
custom HTTP header X-XSS-Detected to the HTTP response so that the client-side code
or the browser can invalidate the response and prevent the payload from being rendered.
In this version of the research, we designed the detection system only to detect attacks,
not to prevent attacks. Therefore, when the detection system detects an attack, it logs
all information about the request and stores it in a centralized log database for human
verification.

RESULT AND DISCUSSION
In this section, we evaluate the accuracy of our server-side Cross-site Scripting detection
engine. The accuracy will be measured using a confusion matrix because the reliability
of our detection system depends on how many payloads the detection system can detect,
shown by the rate of false positives and false negatives (Bates et al., 2010). The evaluation
was carried out on two Cross-site Scripting attacks: Reflected Cross-site Scripting and
Stored Cross-site Scripting. An attack condition will be made by simulating an HTTP
request to the server where our detection system is installed and active. The application
that becomes the target of exploitation is Damn Vulnerable Web Application (DVWA), a
vulnerable-by-design web application developed for security testing and experiments. The
attack simulation consists of 499 HTTP requests, divided into 239 malicious payloads taken
from XSS Payload List in GitHub (https://github.com/pgaijin66/XSS-Payloads) and 261
benign payloads taken from HTTP CSIC Dataset 2010 (Giménez et al., 2010). An example
of the evaluation data can be seen in Table 4. Note that for the malicious payloads, since
some of the payloads listed on the XSS Payload List might not be working on Google
Chrome due to some circumstances (e.g., the payload is specific for another browser),
we filtered and curated the payload into 239 payloads that can be verified are working in
Google Chrome browser.

Nature Payload Source
Benign maria-terzon@lingotes.com.org HTTP CSIC

Dataset
Benign <x src=”alert(1)”>IMPORTANT<x> Custom List
Malicious <meta http-equiv="refresh" content="0;url=javascript:conf

irm(1)">
XSS Payload List

Malicious <script>alert(“XSS”);</script> XSS Payload List
Malicious <form><isindex formaction="javascript:confirm(1)" XSS Payload List

Table 4
Example of evaluation dataset

Pertanika J. Sci. & Technol. 31 (3): 1353 - 1377 (2023) 1369

Server-Side Cross-Site Scripting Detection by HTML Semantic Parsing

The reason behind the use of those data sources is that HTTP CSIC Dataset 2010 is
widely used for training models that can identify dangerous payloads (Yavanoglu & Aydos,
2017; Vartouni et al., 2018); while XSS Payload list provides various types of payloads with
encoding, obfuscation, and detection evasion properties that are similar to actual conditions.
Furthermore, there are two types of attack scenarios that we set up for the evaluation:

1. Direct-input attack
In this scenario, the source of the attack comes directly from the user’s input (i.e.,
HTTP request), both on Stored XSS and Reflected XSS attack attempts. Thus, no
information from the database is involved in analyzing and detecting the attack. This
scenario evaluates our detection system’s capability of Light Inspection (see Detection
Algorithm section).

2. Persisted attack
In this scenario, the attack’s source originates from data already stored inside the
database. That means we first make sure that the XSS payloads are inputted and stored
with no alert or prevention from every detection system intentionally, but when those
payloads are retrieved from the database into the DVWA page, the detection systems
will try to detect the attack. This scenario evaluates our detection system’s Deep
Inspection (see Detection Algorithm section) capability, where information from the
database is analyzed to detect potential attacks.

As a benchmark, we compare the performance of our detection system with a server-
side wide-range attack detection system named PHPIDS and the XSS Auditor itself, a client-
side XSS attack detection system. Table 5 shows the comparison between our proposed
method and the benchmark methods. Both attack scenario above is also performed on the
PHPIDS and the XSS Auditor, and the confusion matrix will be measured accordingly.
Since XSS Auditor is unavailable on the more recent version of Google Chrome, the
evaluation process will use Google Chrome version 70.0.3538.77. Because XSS Auditor
is a client-side system, to determine whether it detects the attempted XSS attack, we set
up a reporting URL endpoint and tell the XSS Auditor to report the detected attack into
the reporting URL using “X-XSS-Protection header=1; report=http://ourservice.com/
report”. Any attempted attack detected by the XSS Auditor can be collected and verified.
As for PHPIDS and our detection method, we rely on the detection result to consider
if the attacks have been detected. Should the detection methods classify the payload as
malicious, since we have verified that every payload inside the malicious list is working
on the Google Chrome browser, the detection result can be considered reliable, and the
payload is truly malicious.

Pertanika J. Sci. & Technol. 31 (3): 1353 - 1377 (2023)1370

Chrisando Ryan Pardomuan, Aditya Kurniawan, Mohamad Yusof Darus, Muhammad Azizi Mohd Ariffin and Yohan Muliono

Table 5
Comparison between ours and benchmark methods

Comparisons Our Proposed
Method

PHPIDS XSS Auditor

Location Server-side Server-side Client-side
Scope of Scanning Database Data, HTTP

Request, HTTP
Response

HTTP Request,
HTTP Response

HTTP Request,
HTTP Response

Supported Web Any web application PHP-based Web
Application

Any web application
that a browser can

render
Type of XSS attack

detected
Stored XSS,

Reflected XSS
Reflected XSS Reflected XSS

Attack Result Comparison

The results obtained by each detection system after the attack simulation can be found in
Tables 6 and 7.

Table 6
Attack simulation result

Metrics Our Detection System PHPIDS XSS Auditor
Scenario Direct-

input
Persisted

Attack
Direct-
input

Persisted
Attack

Direct-
input

Persisted
Attack

TP 180 192 225 0 239 0
FP 0 0 0 0 0 0
TN 261 261 261 261 261 261
FN 59 47 14 239 0 239

For the Direct-input scenario, our analysis of the result is as follows. From 239
malicious payloads, our detection system detected 180 as potential Cross-site Scripting
payloads (true positive), while 59 failed to be identified (false negative). Meanwhile, from
261 benign payloads, our detection system successfully identified 261 requests, or all
requests, as harmless (true negative), leaving 0 payloads misclassified (false positive). On
the other hand, the same attack payload is replayed to the DVWA application on different
servers with two security countermeasures: (1) PHPIDS and (2) XSS Auditor, as previously
mentioned. PHPIDS correctly identified 225 malicious payloads (true positive), leaving
14 payloads classified falsely (false negative). For the benign samples, PHPIDS could
correctly identify all requests as not malicious (true negative), also leaving zero payloads

Pertanika J. Sci. & Technol. 31 (3): 1353 - 1377 (2023) 1371

Server-Side Cross-Site Scripting Detection by HTML Semantic Parsing

misclassified. Furthermore, XSS Auditor on Google Chrome could correctly detect 239
malicious XSS payloads, leaving 0 payloads that failed to be identified. Furthermore, for
benign samples, XSS

Auditor was performing similarly in identifying all requests as not malicious correctly.
With that, it can be concluded that XSS Auditor outperforms the other detection mechanisms
when detecting XSS attacks through mere HTTP requests. The confusion matrix of the
results can be seen in Figure 7.

Figure 7. Cross-site scripting detection confusion matrix on direct-input scenario

Meanwhile, our analysis of the result for the Persisted Attack scenario is as follows.
From 239 malicious payloads, our detection system detected 192 as potential Cross-
site Scripting payloads (true positive), while 47 failed to be identified (false negative).
From 261 benign payloads, our detection system successfully identified all the requests
as harmless (true negative), leaving zero payload misclassified (false positive). On the
other hand, neither PHPIDS nor XSS Auditor could correctly identify any malicious XSS
payloads that originated inside the database, resulting in 239 false negatives. Though, for
the benign samples, PHPIDS and XSS Auditor could still correctly identify all requests
as not malicious (true negative), leaving 0 payloads misclassified. With that, it can be
concluded that our proposed method outperforms the other detection mechanisms when
detecting XSS attacks that originate from inside the database. The confusion matrix of the
results can be seen in Figure 8.

We also calculated 4 basic evaluation metrics from the confusion matrix: accuracy,
precision and recall, and the F1-score. The precision and recall metrics specifically are
calculated because in designing such an attack detection system, the risk of having a
malicious payload detected as a benign payload (false negative) could result in a devastating
effect, more than the risk of having a benign payload falsely identified as malicious payload.
Therefore, the precision and recall metrics allow us to capture that characteristic. However,
achieving low false positives and falseFeatures negatives is the grand objective. Finally,

Pertanika J. Sci. & Technol. 31 (3): 1353 - 1377 (2023)1372

Chrisando Ryan Pardomuan, Aditya Kurniawan, Mohamad Yusof Darus, Muhammad Azizi Mohd Ariffin and Yohan Muliono

Table 7
Accuracy, precision, recall, and F1 of the evaluation process

Figure 8. Cross-site scripting detection confusion matrix on persisted scenario

the calculation result of our proposed method, PHPIDS, and XSS Auditor can be seen in
Table 7.

Metrics Our Detection System PHPIDS XSS Auditor
Scenario Direct-

input
Persisted

Attack
Direct-
input

Persisted
Attack

Direct-
input

Persisted
Attack

Accuracy 0.88 0.91 0.97 0.52 1.00 0.52
Precision 1.00 1.00 1.00 0.26 1.00 0.26

Recall 0.76 0.80 0.94 0.50 1.00 0.50
F1-score 0.86 0.89 0.97 0.34 1.00 0.34

Moreover, our analysis of the result obtained by our proposed method is described as
Equation 2:

 (2)

As an overall performance, the detection system achieves an accuracy of 0.88 means
it was able to identify correctly 88% of the payloads (both benign and malicious) that
were sent to the server. We believe this number is promising, although there is still much
space for further improvement, especially in reducing the false negative rate (Equation 3).

 (3)

Pertanika J. Sci. & Technol. 31 (3): 1353 - 1377 (2023) 1373

Server-Side Cross-Site Scripting Detection by HTML Semantic Parsing

The precision calculation reaching 1.0 point indicates that the detection mechanism
has identified all the received attack payloads accordingly or with no false positives. The
achieved result must be maintained because any false positive will directly reduce the
system’s effectiveness and inhibit the response to an attack due to additional checks that
must be carried out on incoming warnings.

 (4)

While precision measurement reaches a very high score, recall measurement indicates
the opposite. As the score only reaches 0.76 points, this reflects that the detection
mechanism still results in a high number of false negatives (Equation 4). It will have a
side effect on the overall system’s reliability since there are possibilities that an attack will
go through undetected.

 (5)

Finally, the F1-score measurement to calculate the harmonic mean between precision
and recall that reaches 0.86 shows that the values of precision and recall are quite balanced
but not perfect (Equation 5). As explained before, the high number of false negatives or
low recall values is the main cause.

Result Analysis

From the above results, on the Persisted Attack scenario, our proposed method outperforms
the other detection mechanisms in detecting Stored XSS attacks, in which the payload
is already stored inside the database. This capability can be impactful, especially when
implemented on an existing web application that might (or might not) have suffered an
XSS attack because of recent attacks that can be detected and attacks that are prior to the
installation of the detection mechanism. PHPIDS, although it is placed on the server-side,
does not achieve the same result, mainly due to its inability to examine payloads from the
database. Because PHPIDS’s checking mechanism relies on the input from HTTP request
alone, should an adversary find a way to trigger an XSS attack without having to put the
payload on the HTTP request (e.g., through SQL Injection, HTTP request smuggling
(Jabiyev et al., 2021), or Stored XSS attack performed before the PHPIDS is installed),
the XSS payload cannot be detected.

Moreover, Chrome’s XSS Auditor was also unable to detect Stored XSS attack
attempts because PHPIDS cannot. Being a client-side detection mechanism, the source of
information used by XSS Auditor to determine whether an XSS injection has occurred is
only the information that the browser sends (i.e., HTTP request) and receives (i.e., HTTP
response). Hence, every bit of data (including the malicious XSS payload) that might

Pertanika J. Sci. & Technol. 31 (3): 1353 - 1377 (2023)1374

Chrisando Ryan Pardomuan, Aditya Kurniawan, Mohamad Yusof Darus, Muhammad Azizi Mohd Ariffin and Yohan Muliono

originate from other locations, especially from the database, would already have been
inserted into the HTTP response document when it arrived on the user’s browser. As no
part of the HTTP request is dangerously reflected in the HTTP response received by the
auditor, no alert will be triggered. Figure 9 illustrates the gaps in our proposed detection
system covered by both approaches.

Figure 9. Different detection approaches between ours and other methods

However, another conclusion is that despite the good performance, our proposed
method still had a noticeable number of false negatives. Our post-simulation analysis
discovered that a high rate of a false negatives is majorly caused by the following:

1. Encoding
As we used the XSS Payload List as the primary malicious data source, we found that
many payloads use a non-standard encoding such as UCS-4BE and Windows-1251 to
avoid detection of Web Application Firewall (WAF). Although the detection system
is designed to mimic the browser’s interpretation as closely as possible, these non-
standard encoding differences were still causing an unhandled interpretation difference
between the detection system with the web server and the browser. Table 8 illustrates
the different interpretation that occurs in the simulation.

Pertanika J. Sci. & Technol. 31 (3): 1353 - 1377 (2023) 1375

Server-Side Cross-Site Scripting Detection by HTML Semantic Parsing

Table 8
Mismatch encoding interpretation on our detection algorithm

No Payload Browser
Interpretation

Detection
system
Interpretation

1 	 \t
2 <body background=javascript:alert(◆XSS◆);> “ “
3 <iframe/◆/ src=javaSCRIPT:alert(1) null %00

2. The flaw in the detection algorithm
In our post-simulation analysis, we recorded every payload sent to the server, its kind
(benign or malicious), and the detection system’s response to the payload. From the
failed detected payload list, we found that some HTML tags apparently can also be
used to perform a Cross-site Scripting attack but are not included in the list of elements
that must be checked by the detection system, as can be seen in Table 9.

Table 9
Mischecked element on the detection algorithm

◆ indicates the position of encoding mismatch

No Payload Element
1 <svg><style> font-style:’<iframe/onload=alert(1)>’ <style>
2 <div/style=”width:expression(confirm(1))”>X</div> <div/style=…>
3 <iframe %00 src=”	javascript:prompt(1)	”%00> <iframe>
4 <iframe srcdoc=’<body onload=prompt(1)>’> Srcdoc=…

CONCLUSION

Our proposed approach, a modified design for a server-side XSS detection system based
on Google Chrome’s XSS Auditor, was able to maintain high fidelity characteristics by
keeping interposition on the interface for the HTML parser and achieve a good result in
detecting XSS payloads from both HTTP request input and inputs that are already stored
inside the database. We believe that the original design of XSS Auditor can be more
impactful in protecting users from XSS attacks by examining the Database response instead
of only the user’s direct input, as can be observed on many client-side XSS detection
systems. Compared to other detection approaches, our proposed methods have a strategic
advantage in detecting Stored and Reflected XSS attacks with their ability to intercept
and analyze user input already stored inside the database. The evaluation result shows
that our approach achieves 88% accuracy, a considerably high number in identifying and

Pertanika J. Sci. & Technol. 31 (3): 1353 - 1377 (2023)1376

Chrisando Ryan Pardomuan, Aditya Kurniawan, Mohamad Yusof Darus, Muhammad Azizi Mohd Ariffin and Yohan Muliono

detecting malicious XSS payloads, although there is still room for further improvements.
In the future, our detection algorithm can be extensively improved by considering more
HTML elements to be checked and tweaking and matching the encoding process between
the proposed detection system and the browser in general to minimize the false negative
rate. A more comprehensive evaluation can also be conducted to measure the performance
of the proposed method in terms of speed and memory consumption. Finally, while most
browsers have their XSS protection, having more layers of security on the server side to
guard the users might not be bad.

ACKNOWLEDGEMENT

We thank everybody involved in this research for their breakthroughs, guidances, and
supports, including Universitas Bina Nusantara, Universiti Teknologi MARA (UiTM)
Shah Alam, and the entire world’s cybersecurity industry.

REFERENCES
Abaimov, S., & Bianchi, G. (2019). CODDLE: Code-injection detection with deep learning. IEEE Access, 7,

128617-128627. https://doi.org/10.1109/ACCESS.2019.2939870

Bates, D., Barth, A., & Jackson, C. (2010). Regular expressions considered harmful in client-side XSS filters.
In Proceedings of the 19th International Conference on World Wide Web (pp. 91-100). ACM Publishing.
https://doi.org/10.1145/1772690.1772701

Cui, Y., Cui, J., & Hu, J. (2020). A survey on XSS attack detection and prevention in web applications.
In Proceedings of the 2020 12th International Conference on Machine Learning and Computing (pp.
443-449). ACM Publishing. https://doi.org/10.1145/3383972.3384027

Gan, J. M., Ling, H. Y., & Leau, Y. B. (2020). A Review on detection of cross-site scripting attacks (XSS) in
web security. In M. Anbar, N. Abdullah, & S. Manickam (Eds.), International Conference on Advances
in Cyber Security (Vol. 1347, pp. 685-709). Springer. https://doi.org/10.1007/978-981-33-6835-4_45

Giménez, C. T., Villegas, A. P., & Marañón, G. Á. (2010). HTTP data set CSIC 2010. Information Security
Institute of CSIC (Spanish Research National Council). https://www.tic.itefi.csic.es/dataset/

Jabiyev, B., Sprecher, S., Onarlioglu, K., & Kirda, E. (2021). T-Reqs: HTTP request smuggling with differential
fuzzing. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security (pp. 1805-1820). ACM Publishing. https://doi.org/10.1145/3460120.3485384

Khazal, I. F., & Hussain, M. A. (2021). Server side method to detect and prevent stored XSS attack. Iraqi
Journal for Electrical & Electronic Engineering, 17(2), 58-65. https://doi.org/10.37917/ijeee.17.2.8

Liu, M., Zhang, B., Chen, W., & Zhang, X. (2019). A survey of exploitation and detection methods of XSS
vulnerabilities. IEEE Access, 7, 182004-182016. https://doi.org/10.1109/ACCESS.2019.2960449

Rodríguez, G. E., Torres, J. G., Flores, P., & Benavides, D. E. (2020). Cross-site scripting (XSS) attacks
and mitigation: A survey. Computer Networks, 166, Article 106960. https://doi.org/10.1016/j.
comnet.2019.106960

Pertanika J. Sci. & Technol. 31 (3): 1353 - 1377 (2023) 1377

Server-Side Cross-Site Scripting Detection by HTML Semantic Parsing

Swiat. (2008). IE 8 XSS filter architecture/implementation. Microsoft. https://msrc.microsoft.com/blog/2008/08/
ie-8-xss-filter-architecture-implementation/

Sarmah, U., Bhattacharyya, D. K., & Kalita, J. K. (2018). A survey of detection methods for XSS attacks. Journal
of Network and Computer Applications, 118, 113-143. https://doi.org/10.1016/j.jnca.2018.06.004

Satish, P. S., & Chavan, R. K. (2017). Web browser security: Different attacks detection and prevention
techniques. International Journal of Computer Applications, 170(9), 35-41.

Shar, L. K., & Tan, H. B. K. (2011). Defending against cross-site scripting attacks. Computer, 45(3), 55-62.
https://doi.org/10.1109/MC.2011.261

Stock, B., Lekies, S., Mueller, T., Spiegel, P., & Johns, M. (2014). Precise client-side protection against DOM-
based cross-site scripting. In 23rd USENIX Security Symposium (pp. 655-670). USENIX Association.

Takahashi, H., Yasunaga, K., Mambo, M., Kim, K., & Youm, H. Y. (2013). Preventing abuse of cookies stolen
by XSS. In 2013 Eighth Asia Joint Conference on Information Security (pp. 85-89). IEEE Publishing.
https://doi.ieeecomputersociety.org/10.1109/ASIAJCIS.2013.20

Vartouni, A. M., Kashi, S. S., & Teshnehlab, M. (2018). An anomaly detection method to detect web attacks
using stacked auto-encoder. In 2018 6th Iranian Joint Congress on Fuzzy and Intelligent Systems
(CFIS) (pp. 131-134). IEEE Publishing. https://doi.org/10.1109/CFIS.2018.8336654

Wichers, D., & Williams, J. (2017). OWASP top 10 - 2017. OWASP Foundation. https://owasp.org/www-pdf-
archive/OWASP_Top_10-2017_%28en%29.pdf.pdf

The Chromium Projects. (2019). XXX Auditor. https://www.chromium.org/developers/design-documents/
xss-auditor

Yavanoglu, O., & Aydos, M. (2017). A review on cyber security datasets for machine learning algorithms. In
2017 IEEE International Conference on Big Data (Big Data) (pp. 2186-2193). IEEE Publishing. https://
doi.org/10.1109/BigData.2017.8258167

